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Today information circulates at the speed of light and rapid progress is made 

in all domains. That sometimes makes us forget that in former times everything 

was infinitely slower: both the transmission of knowledge, but also its 

development. 

Some argue that algebra “has been around since 825” because the oldest 

treaty that speaks of it – written in Arabic in Baghdad by Al-Khwarizmi – dates 

from that period. But what they don’t think about is when it arrived on our shores 

(its transmission), nor the form it took during the Middle Ages (its development). 

That is why we feel it is interesting to 1) explore how algebra was presented 

in Germany in 1521, by one of the first authors to write about it, and 2) show that 

it was not yet considered the mathematical sine qua non. Indeed, it was rivalled 

by the far more ancient technique of false position. 

 

 

REGULA FALSI: BETWEEN MATHEMATICS AND MUSIC/ACCOUNTANCY 

The chapter title page (below) announces the start of the section on false 

position and algebra. Running to 78 pages, the section is preceded by 95 pages of 

classical arithmetic, with a strong emphasis placed on the Rule of Three (cross-

multiplication). It is followed by 78 pages about music, accountancy and the 

calibration of barrels. Far from being simply anecdotal or aesthetically pleasing, 

this page is most intriguing to those who take an interest in the history of 

mathematics. 
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The first thing one notices is that the size of the script clearly foregrounds 

false position – called regula falsi (“false rule” in Latin) – compared to algebra, 

which was called Coss in Germany at the time (from cosa, “thing”, which meant 

“unknown” in Italian). This shows that in 1521, algebra was by no means the 

standard technique when it came to solving problems. Its diminutive status 

compared to false position was due to the fact that it was not yet fully effective, 

as we will see below. 

The page contains another paradox. In a book devoted to new, written 

calculation – a development made possible by the numerals presented on its first 

few pages, and which the author presents as neither Indian nor Arabic – the 

engraving shows people performing calculations … using counting tokens and 

abaci! And this engraving is reproduced three times throughout the book! That is 

a sign that in Germany in 1521, the new calculation methods were still very much 

in the minority. 

 

FALSE POSITION 

This now largely forgotten calculatory method was very well known in the 

Middle Ages: the panel provides a brief summary for the modern-day reader.1  

                                      
1. See also Gavin & Schärlig, Longtemps avant l'algèbre : La Fausse Position, ou comment on a posé le faux pour 
connaître le vrai..., Presses Polytechniques et Universitaires Romandes, Lausanne, 2012, 222 p. 
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Simple false position 

 
The false position method, which was already known in Ancient Egypt, is 

used to solve linear problems (i.e. involving direction proportion). It 

involves assuming an easily computed – but deliberately incorrect – 

value for the unknown number. The mathematician carries out the proof, 

but obviously does not – generally – obtain the correct answer. He then 

turns to the rule of three, using the incorrect value, the incorrect answer, 

and the number he wishes to obtain. And thus he arrives at the correct 

answer.  

@@@@@@@ 

An example. A man has found some treasure. He has squandered half of 

it, replaced a quarter of it, then squandered a further eighth. He has 50 

gold coins left. What was the original treasure? For the sake of 

practicality, the mathematician assumes 8. Halved, the treasure equals 

4. Replenished by a quarter, it increases to 6. Reduced by one eighth, it 

is worth just 5. This is one tenth of the 50 gold coins. So 8 is ten times 

too small. The answer is 80. 

It is worth noting in passing that good old maths problems involving 

running taps and unplugged bathtubs – bad memories for many a school-

leaver – are much easier to solve using false position than with algebra. 

And that comes as no surprise: they were devised a very long time ago 

to illustrate how false position works and were only later swept up into 

the corpus of algebra lessons, where they are rather out of place. 

Here is another example, from 14th-century Byzantium. A container is 

equipped with five tubes: the first one fills it in 2 hours, the second in 3 

hours, and the third in 4 hours. But, at the same time, one tube empties 

it in 6 hours, and another in 4 hours. When all tubes are working at the 

same time, how long does it take to fill the container? 

The mathematician assumes 12 hours. The number of times the 

container is filled is 6 + 4 + 3 – 2 – 3 = 8. If it is filled 8 times in 12 

hours, it will be filled once in 1½ hours. The answer is therefore one and 

a half hours. This would be a lot more difficult to work out using algebra! 

Another possible false position: the mathematician assumes 1 hour. The 

container has been filled at a rate of 1/2 + 1/3 + 1/4 (feed tubes) and 

emptied at a rate of 1/6 + 1/4 (drainage tubes). It is therefore two-thirds 

full. It will be completely full in 3/2 x 1 hour, i.e. in 1½ hours.  

 

There is another regula falsi method: double false position. This is what the 

author uses here, even though he does not say so. Since his description of the 
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method is a little dense for us – though undoubtedly pedagogical for its day – let’s 

briefly explain what it is in modern mathematical symbolism. The mathematician 

chooses two values, i.e. two false positions: x1 and x2 here. She calculates the 

answer they would give and notes down the difference between the two answers 

(here e1 et e2), 2 compared to the value she is looking for. She adds or subtracts 

the cross-multiplied products, depending on whether the errors have the same 

sign. She then calculates the sum total or the difference between the two errors, 

again depending on whether they have the same sign or not. The division by this 

value gives the correct answer. In algebraic notation – which is clearly not well 

suited to describing such a method! – the following formula is applied: 

12

12

ee

xexe






21x   (1) 

The first thing one notices in the text is the disproportionate size of the + and 

– signs. Moreover, this is the first time they are used, after a hundred pages of 

arithmetic from which they are entirely absent. 

 

Figure 1: Disproportionate size of the + sign,  

which, furthermore, does not function as an operator. 

 

When one deciphers the text, it becomes apparent that the signs are used as 

indicators, as a kind of stenography to show that there is an excess or a deficit. 

They do not, therefore, mean anything in an operational sense. 

After his explanation, Schreiber moves on to an example ... but does not feel 

the need to elaborate on it. That bears witness to how well known false position 

was among his contemporaries: he doesn’t go into details about what everyone 

already knows. So, five centuries on, it’s our job to explain what he overlooks! 

Schreiber suggests trying to find a number which, when divided by 4, 

multiplied by 8 and halved, gives 24. For those of us trained in algebra, the answer 

is obvious: 24 [(x : 4 × 8) : 2 = 24]. 

                                      
2. [Translator’s note] This difference – whether an “excess” or a “deficit” – is known as an “error” (e). See Randy 
K. Schwartz, “Adopting the Medieval ‘Rule of Double False Position’ to the Modern Classroom”, in Mathematical 
Time Capsules: Historical Modules for the Mathematics Classroom, Mathematical Association of America, 2010. 
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We can also see that this problem goes round in circles: no matter what the 

value chosen for the false position, the answer will always be the same value. But 

this wasn’t true of 16th-century readers. To whom the author suggests first trying 

with 28. 

Let’s suppose, then, that the number sought is 28. We take one quarter – 7 – 

and multiply it by eight, giving 56, which we divide by two, giving 28. As the 

answer is 28, there is an excess of 4 vis-à-vis the 24 we were trying to obtain. 

Schreiber condenses this to “28 + 4”, which, more long-windedly, means that 

“If one assumes twenty-eight, there is an excess of four”. The second attempt 

assumes 32, which gives 32 – as we would expect – and an excess of 8, which the 

medieval reader is supposed to work out. Hence the precis “32 + 8”, meaning 

“If one assumes thirty-two, there is an excess of eight”. 

As there are two excesses, subtractions are required in formula (1): (28 x 8) 

minus (32 x 4) in the numerator, and 8 minus 4 in the denominator, giving 96 / 4 

and an answer of 24.   

Double false position 

 
In the slightly more complex double false position, the mathematician 

assumes two successive false positions and calculates the difference 

(error) between each incorrect answer and the answer he is seeking. 

Then he applies either rules of proportionality to the errors or a formula 

(which can be proved as its equivalent3), which is what Schreiber does 

here. And that produces the correct answer. 

Choosing which version depends on the problem, as we shall see. But we 

also show that double false position is applicable in all cases, which 

means that some ancient authors, like Schreiber here, consider this 

method alone. 

In the words of Leonardo of Pisa (also known as Fibonacci) in 1202, the 

formula takes the following form: “The first error is multiplied by the 

second position; and the second error by the first position. And if the 

errors are both diminution, or both augmentation,4 the smallest sum of 

the said multiplications is subtracted from the larger; and the remainder 

is divided by the difference between the errors. Thus a solution to the 

questions is found: and if one error is diminution, and the other 

augmentation, the two multiplications are then added together, and the 

sum is divided by the sum of the errors.”5 

                                      
3. Gavin & Schärlig, Longtemps avant l’algèbre, la fausse position, pp. 22–23. 
4. In other words, if there are two deficits, or two excesses.  
5. Leonardo of Pisa (Leonardo Pisano), Liber Abaci, Pisa, 1202, folio 141r of the manuscript, and  page 319 of the 
transcription by Baldassare Boncompagni: Scritti di Leonardo Pisano, volume I, Il Liber Abbaci di Leonardo Pisano 
pubblicato secondo la lezione del codice Magliabechiano C. I, 2616, Badia Fiorentina, N° 73, Rome, 1857, 459 p. 
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Figure 2: Statue (1863) of Leonardo de Pisa, or Fibonacci,  

at the Camposanto de Pise (Italy)  

(photo WikiCommons Hans-Peter Postel, cc-by 2.5) 

 

Here is an example – the same one as in the panel above, but with a 

slight alteration that makes it necessary to use double false position. 

(The ancients – who did not know about algebra – failed to see that all 

they needed to do was transfer the constant 5 to the other side of the = 

sign.) 

A man has found some treasure. He has squandered half of it, replaced 

a quarter of it, then squandered an eighth of it and, lastly, recovered 5 

gold coins. He has 65 gold coins left. What was the treasure to begin 

with? 

Let’s start off with simple false position. First with a false position of 8: 

8 – 4 + 2 – 1 + 5 = 10. Then with a false position of 16: 16 – 8 + 4 – 2 

+ 5 = 15. As we can see, the false position has been doubled, but the 

answer has not! The problem is therefore no longer linear. 

One therefore has to use double false position and the formula: 

First false position: 8. The answer is 10, so 55 are coins missing. 

Second false position: 16. The answer is 15, so 50 coins are missing  

𝑡𝑟𝑒𝑎𝑠𝑢𝑟𝑒 =  
(16×55)−(8×50)

55−50
= 96 𝑔𝑜𝑙𝑑𝑒𝑛 𝑐𝑜𝑖𝑛𝑠 

@@@@@@@ 

Here is another example (China, 2nd century BCE). Let’s suppose there 

is a low wall 90 cm high, on top of which a melon plant is growing at a 
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rate of 7 cm a day, and at the bottom of which there is a calabash vine 

growing at a rate of 10 cm a day. How many days will it take for them 

to meet? 

First false position: 5 days. The melon plant has grown downwards by 35 

cm, and the calabash vine upwards by 50 cm. The total is 85 cm, so 

there is a deficit of 5 cm. Second false position: 6 days. The melon plant 

has grown downwards by 42 cm, and the calabash vine upwards by 60 

cm. This gives a total of 102 cm: there is an excess of 12 cm. 

By applying the formula given in words by Leonardo, but now written in 

modern-day notation, we calculate the number of days:  

   
17

5
5

17

90

125

12556





daysofNumber  

As we can see, the formula is more elegantly expressed in writing (which 

is what Leonardo does) than translated into modern-day notation. The 

same is true of formula (1) above. 

 

As his example has produced two excesses, and therefore subtractions when 

the formula is applied, Schreiber repeats the same problem with different false 

positions in order to produce an excess and a deficit, and thereby illustrate how 

the mechanism works with additions. This is what he calls a second way. He 

chooses 21 then 28, which produces a deficit of 3 and then an excess of 4, as the 

reader of the copy digitised for this site rightly corrected. The author himself makes 

a mistake, and finds a deficit of 12 and an excess of 8, which he summarises as 

“21 – 12” and “28 + 8”. And it certainly was the author’s mistake, for the chances 

of the typesetter making two – and what’s more proportional – misprints in such 

quick succession are very slight. 

The numerator of the formula is therefore (28 x 3) plus (21 x 4), and the 

denominator is 3 plus 4. This gives 168 / 7, and again an answer of 24. 

 

 

Figure 3: With 28, there is an excess of 4 (after correction), as in Figure 1;  

with 21, there is a deficit of 3. 
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The “double false position” calculation reconstructed 

 
 

For those who want a “demonstration” of formula (1) in modern terms, 

let’s take the problem Kx + b = c, with A1 and A2 as the two false 

positions: 

KA2 + b = c + δ2  

We multiply the first equality by δ2 and the second by δ1: 

KA1δ2 = (c – b)δ2 + δ1δ2 

KA2δ1 = (c – b)δ1 + δ1δ2 

We subtract the second equality from the first: 

K(A1δ2 – A2δ1)= (c – b) (δ2 – δ1); hence 𝐾
A12−A21

2−1
+ 𝑏 = 𝑐 

So, the solution to Kx + b = c is given by 
A12−A21

2−1
, which corresponds to 

formula (1). 

 

Figure 4: Widmann’s Algorismus Ratisbonensis (c.1450), folio 137r. 

In the problem he sets out, position 12 gives a deficit of 1/20, while 

position 13 gives an excess of 9/80. The difference between the two errors 

is 260/1600, and the cross is a reminder to “cross the product”  

in the denominator. 

The reader might like to try using false position to solve the so-called 

Diophantine problem, which asks how long the following person has 

lived: 

His childhood represented a sixth of his life; a twelfth was given over to 

adolescence; he married after a seventh of his life; five years later he 

had a son, who died having reached half the age of his father, who 

himself died eight years after this death.6 

Taking the two false positions A = 72 and B = 120, for example, one 

finds:7 

72 → 744/7 so δA = 24/7 

120 → 1122/7 so δB = – 75/7 

x = (72*75/7 + 120*24/7 )/(75/7 + 24/7)= 864 / (102/7) = 84 

 
 

                                      
6. A problem included in Gavin & Schärlig, op. cit., p. 7. The reader will quickly notice that it is a Kx + b = c type 
problem. 
7. The fractions below are not exponents but a shorthand to show, for example, 74 + 4/7 (for which decimal 
expression serves no purpose). 
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INTERLUDE: THE + AND – SIGNS 

As we have already noted, Schreiber does not use the + and – signs in 

arithmetic, but only to mark false positions. And, as we will see, it is in algebra 

alone that he gives them an operational role. 

Let’s briefly recall the history of these two symbols before Schreiber, starting 

with manuscripts. The + symbol appears in the Algorismus Ratisbonensis, written 

around 1450. The + and – symbols are included in the Codex Dresden C 80, written 

in 1481, but only as corrections, which some attribute to Johannes Widmann 

(c.1460–1498). Finally, the Codex Lips. 1470, conserved in Leipzig and containing 

a series of lectures delivered by Widmann in 1486, contains the two symbols in 

the text. In a word, it is in these three manuscripts, considered as a whole, that 

the two symbols appear for the first time, and Widmann played a part in that. 

Moving from manuscripts to books, Widmann’s publication is the first that we 

should consider. It was published in Leipzig in 1489 under the title Behende und 

hübsche Rechenung auff allen kauffmanschaft (“Fine and Nimble Calculation for All 

Merchants”). The opening of the book is given over to arithmetic, as one would 

expect, but we have to wait until the 88th folio to see a – and + sign, both of which 

are operational. There are only a dozen more in the rest of the book. Widmann 

was therefore the first to use these symbols, with this meaning, in a book. 

And that’s not his only masterstroke. On folios 201 and 202 he discusses false 

position. And in the diagrams he provides to summarise a problem, he again uses 

+ and –, but this time as markers, to indicate an excess or deficit. 

Schreiber therefore takes up Widmann’s invention, whose for the notation 

allows him to symbolically illustrate the practice of false position. His own 

revolution would be to use the same in symbols in an algebraic context. 
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Figure 5: Widmann’s work. Left: title page of the original edition, Leipzig, 1489 (NB: 

the first works printed by Gutenberg date from 1452 to 1455); right: illustrated title page 

of the Augsburg edition, 1526 (images MDZ, Bayerische StaatsBibliothek, see here). 

 

ADDITION IN ALGEBRA 

This extract also reveals another innovation: algebra as it was presented to 

German readers in 1521. It’s a very fine little example of literal calculus. Though 

its notations seem almost unbearably unwieldy to us, it contains a revolution, a 

world first: operational + and – signs, very clearly described from the outset as 

und (“and”) and mynnder (“less”). The use of these signs was an important step 

towards algebra becoming an effective mathematical technique. The irony of fate 

being that this would slowly kill off false position, which was at the origin of the 

systemic use of the two signs. 

Let’s first deal with those unwieldy notations. They show just how long it took 

for algebra to gain its status as the mathematical instrument par excellence: at 

the time, it was not an ideal method to solve a problem – far from it! 

Schreiber indicates a constant by placing a letter N and a colon after it, e.g. 

“6N:”, where we would simply write “6”. He indicates a first-degree variable, which 

for us would simply be “x”, by writing pri (for prima) and a colon after it, e.g. 

“9pri:”, where we would write “9x”. Later on – in other passages – he indicates a 

second-degree variable by se (for secunda), a third-degree variable by ter (for 

tertia), and so on and so forth. 

http://daten.digitale-sammlungen.de/0003/bsb00035102/images/index.html?fip=193.174.98.30&id=00035102&seite=1
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Figure 6: The first of the two additions. 

@@@@@@@  

The lesson begins by adding two binomials with a + sign in the left column, 

and two other binomials with a – sign in the right column. Written our way, these 

two additions would be presented like this: 

(9x + 7) + (6x + 5) = 15x + 12 

(6x – 4) + (8x – 10) = 14x – 14 

The author then adds together two other binomials with a + and – sign, one 

of which produces a positive constant, and the other a negative constant: 

(6x + 6) + (12x – 4) = 18x + 2 

(4x + 2) + (6x – 6) = 10x – 4 

He ends by adding together two new binomials, which again have opposite 

signs but where the – sign is in the first and the + sign in the second: 

(6x – 4) + (6x + 2) = 12x – 2 

(6x – 2) + (6x + 4) = 12x + 2 

Rather than elaborating a general rule – which he presents at the end of the 

passage – Schreiber deals with each case by giving an example, thereby 

demonstrating real pedagogical flair. 

 

 

SECOND INTERLUDE: HOW OLD IS ALGEBRA? 

This is a good point to briefly consider an intriguing question in the history of 

mathematics, namely how long algebra has existed as an effective instrument in 

our area of the world. Whenever one dates this maturity back to the end of the 

16th or beginning of the 17th century – for example, in a lecture alluding to the 

progressive demise of false position – audience members invariably make an 

objection: “Impossible! Algebra has been around since the writings of Al-

Khwarizmi, which date from 825!” 

But this ignores the fact that the great man’s text was written in Arabic and 

“published” around 825 in Baghdad, at a time – the 9th century – when European 
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countries were in the midst of what some are loth to call the Dark Ages, but which, 

from the point of view of mathematics in any case, were not enlightened. 

The first documented appearance of algebra in Europe – in Italy, in fact – can 

be found in Leonardo of Pisa’s Liber Abaci (“Book of Calculation”), dating from 

1202, i.e. the 13th century. In Germany, Schreiber had presented algebra in 1521, 

as we have just seen, and in this he was followed by Rudolff in 1525, and then by 

Stiefel, who, in 1591, introduced some order into Stiefel’s work. This already brings 

us up to the 16th century. And the same goes for France, with Scheybel in 1550 

and Viète in 1591 – again, at the end of the 16th century. 

But one still needs to consider the form these appearances took. With the 

likes of Schreiber’s pri: and se: and the textual developments of other authors – 

where successive developments superseded one another in new and innumerable 

notations – algebra, it has to be said, was still in need of fine-tuning. Only at the 

end of the 16th century and the turn of the 17th century – with the advent of x, 

bare constants and, what’s more, the invention of the equals sign by the Welshman 

Robert Recorde – did algebra finally become, in our area of the world, the fully 

effective instrument we know now it to be. 

 

 
MULTIPLICATION IN ALGEBRA 

Another extract complements the previous extract on addition, showing how 

Schreiber sets about presenting multiplication in algebra. Here again, he reviews 

all the possibilities: he calculates the products of two binomials containing a + 

sign, then the products of two binomials containing a – sign, and finally those of 

two others containing opposing signs. Each time, he announces the rule that 

applies to the signs. Transcribed in modern-day notation, his three multiplications 

would be written as follows: 

(6x + 6)(5x + 8) = 30x2 + 30x + 48x + 48 = 30x2 + 78x + 48 

(6x – 8)(5x – 6) = 30x2 – 40x – 36x + 48 = 30x2 – 76x + 48 

(6x + 8)(5x – 7) = 30x2 + 40x – 42x – 56 = 30x2 – 2x – 56 



           
13 

 

Figure 7: The first of the three multiplications. 

  

He concludes this passage with a “rule of signs” … that is a little more long-

winded than the one taught in our schools today: 

When the signs are the inverse of one another, subtract the smaller from 

the bigger, and to what remains write the sign of the biggest number. 

 
 

AN EXAMPLE CALCULATED WITH FALSE POSITION AND WITH ALGEBRA 

Along with several others given by the author, this example illustrates how to 

use the two (then rival) methods to solve a problem: false position on one hand, 

and the “first rules of algebra” on the other. And, once again, false position gets 

to go first. 

By choosing two false positions, 300 followed by 240, Schreiber obtains two 

excesses, 77 and 57 respectively. He summarises the situation by using two + 

signs as markers: 

300 + 77 

240 + 57 

Though it seems obvious to us, this is not a case of two elementary additions, 

but a stenographic precis of one stage in the solution to the problem. The author 

then expedites the process by directly giving the formula’s numerator, divisor, and 

answer. He considers this development – which we would write as  

   
69

20

1380

20

1710018480

5777

5730077240








 

– to be obvious, and doesn’t bother explaining why you need to reverse the order 

of the two products of the numerator, by virtue of the rule “Subtract the smaller 

from the bigger”. 
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 The algebraic solution, with its never-ending unwieldy notations, gives some 

insight into the impracticality of this method in 1521. The notations can be 

compared with what a newcomer to algebra, scrupulously noting down all the 

stages, would come up with today: 

204
4

2

1
84

3

2















































x

 

204
4

2

1
8x

3

8





















 

204
4

2

1
8x

3

8














 

204
4

4x
3

4




 

2041x
3

1
  

23x
3

1
  

69x   

 This illustrates perfectly what we noted above: in 1521, algebra still had 

some progress to make before it could be considered an efficient mathematical 

instrument! 

 
 

NOTHING BEATS A VOYAGE THROUGH TIME AND SPACE! 

This article has introduced the reader to an undeservedly unsung text. It 

illustrates an important rule of ours: in the history of mathematics, nothing beats 

a voyage through time and space. One works one’s way back to the source, and 

gets a taste of those very peculiar ancient notations (in this case, those of Early 

Modern High German) to boot. 

But the above discussion contains another, perhaps more important, lesson, 

one that shows us why algebra took so long to establish itself on our shores. Not 
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only was it unwieldy to use in its contemporary form. Above all, it faced competition 

from false position, which proved a far more elegant solution to linear problems. 

 

 

 

(November 2014) 

 

(Translated in English by Helen Tomlinson, published March 2015) 

 


