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The 1905 edition of the German scientific journal Annalen der Physik has become
famous for publishing Albert Einstein's five ground breaking articles which would
open the door for "modern physics". It is less well-known that in the same 1905
edition of Annalen there was a heated debate between three Central European
scientists' on the true understanding of the Coriolis Effect. When the three didn't
reach any agreement, the Editor-in-Chief, Max Planck, asked them to continue
their discussion somewhere else’.

Today we are proud ourselves of having a fair understanding of quantum
mechanics and relativity theory — but what still baffles our minds is the Coriolis

Effect! No wonder that Alexandre Moatti gave his biography of Gaspard-Gustave
Coriolis (1794-1843) the title Le Mystere Coriolis.

1. CORIOLIS'S MEMOIRE OF 1835

In the 1830s, with the industrial revolution in full swing, Coriolis became
interested in the dynamics of machines with rotating parts. How much did the
centrifugal force, and thus the strain on the machine, change when a part of the
machine was also moving relative to the rotation?

In his 1835 mémoire Coriolis showed that in a machine that was rotating with
an angular velocity 2 where a part was moving relative to the rotation with velocity
V,, one had to add to the ordinary centrifugal force 22R or U2/R (where R is the
distance to the rotational axis and U the rotational speed) a supplementary force

2QV,. This additional force, which much later became known as the "Coriolis

1. One German and two Austrians, who today would have been regarded as Polish, Czech and Ukrainian.

2. Which they did and turned to Physikalische Zeitschrift in 1906 until its Editor-In-Chief got tired of them as
well!

3. His book (CNRS Editions, 2014) and his BibNum contribution (October 2011) contain a detailed review of
Coriolis's 1835 mémoire "Sur les équations du mouvement relatif des systémes de corps" Journal de I'Ecole
polytechnique, 24° cahier, XV, cahier XXIV, p. 142-154. It suffices here just to recapitulate the general idea.
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force", was independent of R and perpendicular to the relative motion V.. In a
counter-clockwise rotation it was directed to the right (to the left in a clockwise).
Because of the right angle deflection of the motion it could not change its speed
(its kinetic energy), only the direction. Coriolis called this additional force "the
composed centrifugal force".

It will be argued here that the problems over 180 years to understand this
"Coriolis force" stems not only from mistaken approaches to conceptually consider
it in isolation, independently of the centrifugal force, but also attempts to visualize
it in a relative frame of reference. It is here that ideas from Isaac Newton's

Principia may come to rescue.

2. DEPICTING FICTITIOUS FORCES

In the standard vector derivation (relative acceleration in a rotating system
Q of a relative motion V, at a distance R), the two forces are organically linked to

each other (see eq 1):

(%)m - (%)ﬁx — OX(QXT) — 20XV, (1)

Although the Coriolis term - 2QxVr - appears to have a different
mathematical structure than the centrifugal term 2x(2xR), they are physically of

the same centrifugal nature®.

2.1 An erroneous depiction of the centrifugal force

Another source of misconception is how we tend to erroneously visualize
fictitious forces, not only the Coriolis force but also the centrifugal force. A popular
way to depict the latter is by an image which contains the relevant parameters,
the rotational velocity U, the distance to the centre of rotation R and the rotation
2 (here anticlockwise). It could look something like this, with the centrifugal force

pointing away along a line passing through the centre of rotation (figure 1).

4. The centrifugal term can also be written as a product of the angular rotation () and a velocity, in this case
the angular velocity (U=QxR).
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Ce
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centrifugal force

Figure 1: A common popular, but misleading, image of the relation between an object in
curved motion (U) and the centrifugal force (Ce) at distance R from the centre of rotation
Q. The image is crossed over because it is not quite correct.

But doing so we are mixing two different frames of reference. The trajectory
of the motion is displayed in an absolute frame of reference, as seen from outside.
But the centrifugal force can only be experienced from "inside" and can only be
depicted in a relative frame of reference.

Still the picture makes some "common sense" since, riding on a carousel or
in a bus taking a curve, we can visually estimate the curvature. The forces we feel

are "inside" the carousel or the bus, but our eyes reach "outside".

2.2 A correct but uninteresting depiction of the centrifugal force

But imagine that we are blindfolded - or travel by night in high-tech smoothly
running train. Now it is almost impossible to find out in which direction the train
is moving (backward or forward?). We notice when the train takes a curve only
because the centrifugal force pushes us in one direction, and if we sit properly our
seat provides an opposite directed centripetal force that keeps us in place. This is

then what we will experience with our senses (figure 2):
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The ordinary centripetal The ordinary centrifugal
acceleration < P acceleration

Figure 2: The same motion as in figure 1 but now depicted only in a relative frame of
motion, following the moving object, and not in an absolute frame of reference where it
is seen from outside the object.

This physically correct image might, however, appear a bit "dull" and
"uninteresting". There is, for example, no information about the curvature of the
motion or if it is forward or backward.

2.3 An erroneous depiction of the Coriolis force

If we still, stubbornly, insist on an erroneous, but "easily understood" image
of the Coriolis deflection it could look something like this (figure 3):

The total centrifugal force Ce

The ordinary

The Coriolis force centrifugal force

Figure 3: An easily understood, but misleading, image of the Coriolis force as one of the
two components of a decomposed centrifugal force.

With an inward motion V: the trajectory of the absolute motion is no longer
exactly along the rotation but spirals radially inwards, towards the centre of
rotation. The centrifugal action, perpendicular to the trajectory, is no longer

pointing along a line passing through the centre of rotation.
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We decompose the vector C. into two vectors. One is passing straight through
the centre of rotation and is the "ordinary" centrifugal force ©22R. The other is
perpendicular and that is Coriolis” "composed centrifugal force" 2QV,. Since the
relative motion V;is radial inwards, we can also see that this additional force is
pointing to the right of the relative motion, for anticlockwise rotation (like the
Earth's).

We are faced with a contradiction, on one hand an "understandable" but
incorrect image, on the other hand a correct image which doesn't make much
"common sense". But there is a solution - we abandon the relative frames of

references and only use absolute frames of reference.

3. DEPICTION OF FORCES IN AN ABSOLUTE FRAME OF REFERENCE

By a strange international convention the "Coriolis acceleration" is not the
Coriolis force per mass unit, but an acceleration, linked to the centripetal
acceleration, due to a real force, pointing in the opposite direction to the Coriolis
force - just like the centripetal force is pointing in the opposite direction to the
centrifugal force!

To start with the latter it is the action of an inward central force U2/R (figure
4).

centripetal

acceleratiog

Figure 4: A constant centripetal force of magnitude 22R drives an object into a circular
motion. Instead of an outward centrifugal force because of the curved motion, we
have a curved motion because of an inward centripetal force.

The inward spiralling trajectory due to a tangential velocity U and a radial
velocity V, can now be seen as the result of an inward centripetal force, which can

be decomposed into one ordinary centripetal force, directed to the centre of
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rotation, and a perpendicular force, now orientated to the left of the relative radial

motion, the Coriolis acceleration (figure 5).

u,v
The ordinary

centripetal
acceleration /

P centripkta
/. _.1acceleration
The Coriolis

Sk
acceleration

Figure 5: To make the tangentially moving body also move radially inward a centripetal
acceleration has to be applied, which is the sum of the ordinary centripetal acceleration
and the Coriolis acceleration.

It can also be said that the Coriolis acceleration has to be applied on a moving
object to avoid it being deflected by the Coriolis force. To understand the Coriolis
deflecting mechanism by studying the Coriolis acceleration in an absolute frame
of reference may sound controversial, but we have a powerful supporter in Sir

Isaac Newton, author of Principia!

4. THE USE OF GEOMETRY IN NEWTON'S PRINCIPIA

The world famous Principia is available in translations in most languages. Still,
few of us have read the book, or even opened it. This is a pity because just
glancing through the pages gives a surprising revelation: there are no algebraic
equations, only Euclidian geometry. By using Euclidian geometry, Newton thought

that his results would be more easily understood, at least in his time (figure 6a).
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Figure 6a: A map from the French edition of Principia displaying all of the figures in Part
I. The figure we will be particularly interested in is "Fig.13" in the middle.

We will give an example of Newton's Euclidian approach that is related to the
problem of calculating the centripetal force. It also illustrates the mathematical

beauty of his reasoning.
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[37]

SECT. IL
De Inventione Virinm Certripetarum.

Prop. 1. Theorema. L

Areas quas corpora in gyros aia racliis ad immobile cenrum irinm
duélis deferibunt, @ in planis immobilibus confiffere, ©- effe tem-
poribus proportionales. ‘
Dividatur tempus in partes zquales, & prima temporis parte
defcribat corpus vi infita retam AB. Idem fecunda temporis
parte,{i nil impediret,redta pergeret ad ¢, per Leg. 1) defcribens
lineam Be zqualem ipfi 4B, adeo ut radiis A4S, BS, ¢§ ad
centrum  adtis,

confecte forent £.
zquales arez 4 T e &

rum ubi corpus
venit ad B, agat
viscentripetaim-
pulfu unico fed
magno, faciatq;
corpus a recta
B e deflettere &
ergere in redta
BC. IpfiBSpa-
rallelaagaturcC  §%
occurrens BC '
C, & completa fecunda temporis parte, corEus( per Legum Co-
rol. 1) repesietur inC, in codem plano cum triangulo A § B, Junge
SC, & tiangulum S BC, ob parallelas S B, Ce, aquale crit trian-
gulo § Be, atq; adeo etiam triangulo S AB.  Simili argmmnt:.::lr i[:

Figure 6b: One of the pages in Principia with the geometrical construction Isaac Newton
used to prove Kepler's Second Law, which is the same as conservation of angular
momentum.
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Figure 6c¢: Before Principia, Newton made a shorter text called "De motu corporum in
gyrum", where he tested some of his ideas.

5. APPLYING NEWTON'S METHOD

Let a body move without friction rectilinearly from A to c over B, B being the
middle of the segment (figure 7).

a) A b) A

Figure 7: A body is moving without friction rectilinearly from A to B (a) and then from B
to C (b). In terms of distance, AB = Bc. Newton's notations are used.
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Newton showed early on in Principia that the radius vector of a body moving
rectilinearly under inertia during equal times covers equal areas and thus obeys

Kepler's Second Law (Figure 8).

A

S
Figure 8: The radius vector of the body's motion in relation to point S covers in equal
times equal areas (green and yellow) in accordance with Kepler's second law.
Newton assumed that the body at B was subject to an impulsive force which,
had it been alone, would have moved the body in a new direction (figure 9a). But

in combination with the original motion the body will move in a combination of the
c
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Figure 9: An impulsive force pushes the body at B in the direction of V (a). The resulting
motion to C is a combination of the motions from B to V and B to c (b).
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From figure 8 we saw that the green and yellow triangles have equal areas.

But what about the new red-dashed triangle SBC in figure 10?

radius vector during the motion from B to c.

Figure 10: The area BSC covered by radius vector during the motion from B to C (red

dashed line) will be shown to have the same area as the yellow area BSc covered by
Newton showed that since both have the same base SB, and the same height

CC’ (equal to cc’), their areas are equal (figure 11).
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Figure 11: Newton's proof that the areas BSC = BSc

Although the body has deviated from its rectilinear motion into a curved
motion, it still fulfils Kepler's Second law by having its radius vector cover equal

areas in equal times (figure 12).
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C

S A

Figure 12: The body moving from A to C over B has its radii vectors cover equal areas
in equal times according to Kepler's Second Law.

Newton then applied the same reasoning for subsequent time steps: in every
point C, D, E and F the body was affected by an impulsive force pointing to the

same central point C (figure 13).

>> ..\7

Figure 13: Figure 12 inserted in its context in Newton's Principia.

Kepler's Second Law, also called ‘The Area Law’ was in the 1600s and most
of the 1700s thought to apply only to celestial objects (planets, moons, comets

etc). But already in Principia, Newton showed that the same laws of motion which

Zr bibnum
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guide the heavenly objects also are active on Earth, among them the Area’s Law,

which we today call "conservation of angular momentum".

6. NEWTON AND THE CENTRIPETAL FORCE

Long before Newton thought about deriving Kepler's Second Law, he was
interested in calculating the centripetal force. The centrifugal force had been
calculated by Huygens in 1659 and Newton's first attempts dates from before 1669
(when he was less than 27 years old).

It is quite fascinating how he used the little-known Proposition 36 from Book
ITI of Euclid’s Elements. Here Euclid proved that a rectangle constructed over the
diameter CE and the short distance CD has the same area as the quadrate defined
by the length BC (figure 14a).

Thus CE x CD = (BC)2. We now apply it on for our purpose more relevant
symbols in figure 14b).

2r « Ar = (u - At)? (2a)
2, 2 2 2
Ar = u“-(At) _u, (At) (2b)
2r r 2
acc = %2 (2¢c)

which is the equation for the centripetal force (per mass unit).

u- At
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Figure 14: How Isaac Newton derived the centripetal force from Euclid’'s proposition 36
in Book III with his notations to the left (14 a), the ones applicable to this article to the
right (figure 14 b).

Newton's Principia might have been a relatively "easy read" 300 years ago,
but for a modern reader the geometrical language is not immediately
comprehensible. On the other hand, any effort seems to be highly rewarded by

these beautiful Euclidian proofs!

7. SOME CORIOLIS DERIVATIONS A LA NEWTON

Inspired by Newton we will now apply a geometrial approach to derive the
centripetal acceleration and the Coriolis acceleration for tangential and radial

motions in an absolute frame of reference.

7.1 Tangential motion

We will first derive an expression for the centripetal force, using more or less

the same approach as Isaac Newton in his pre-1669 paper (figure 15).
Q-1 At

Figure 15: A geometrial derivation of the centripetal force.

A body is carried around with a rotation Q at a constant distance r from the
centre of rotation O. An inward directed centripetal acceleration a makes the body
deflect an inward distance As over time At. Without this inward force the object
would move rectilinearly from A to B under inertia Q-r-At. Following Pythagoras
theorem applied to ABO triangle, we have (Q:r-At)2 + r2 = (As + r)2 which yields,

Zr bibnum
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by neglecting second order terms, As = (Q-:r-At)2/2r = a-(At)2/2, which results in
a = Q2r, the centripetal acceleration.

To the tangential motion QR is nhow added a tangential velocity u (figure 16).

(ut+Q-r)At u
D B e K
As As
8 C
E

Q- At

O

Figure 16: Derivation of the centripetal force (per unit mass) for a relatively tangentially
moving body with a speed different from the speed of rotation (see test for details).

The centripetal force is as above: the tangential motion v is added to Q:r
((Qr+ uAt)2 + r2 = (Asy + )2 (3a)

which yields after neglecting quadratic terms:
(u-At)2 + 2u.r.Q-At2 + (Q:r:At)2 = 2 Asy-r (3b)
Asy = (Q2:r + 2Q-u + u2/r) At2/2 (3¢)

i.e. the centripetal acceleration ©22:r, the Coriolis acceleration 2Q-u and a so-
called "metric acceleration term" u2/r. This term turns up in the simplest of the
Coriolis force derivations (see below) and we will now for a short while return to

the relative frame of references where centrifugal forces exist.

7.2 "Metric" terms

The centrifugal force (per unit mass) (Ce) on an object at distance R from the
centre of rotation is Cec = U2/R, where U = QR is the tangential rotational speed.

In the case of a relative tangential motion ur, the total centrifugal force becomes

(U+u)? _ (QR+u,)?
R R

= 02R +20u, + 4 (4)
where the first term is the ordinary centrifugal force 22R and the second term

the Coriolis force 2Quy. The last metric term u,2/R is often explained as a reflection
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of the chosen coordinate systems. For normal velocities it is always weaker than
the Coriolis term. They are equal when
ZQ-urzuTrzﬁur=2U (5)

where U is the speed of rotation 2R.

In the geophysical sciences, where R refers to the radius of the Earth, the
metric term is often disregarded since u-2/R « 2Q-u- when u, does not exceed 100
m/s. But this mathematical-numerical argument misses the physical reason why
the metric term can be disregarded in many practical applications. Although it
does not contain £, and therefore is not related to the rotation, it is nevertheless
not without a physical meaning. We may note its "centrifugal nature", i.e. a
squared velocity divided by a distance. This reminds us that centrifugal forces do

not only appear with rotation, but any curved motion.

(2=1 sec’!

R=2m

gRgzzz n’]/s "r:.l lﬁ.
a)

Figure 17: Free relative motion vr over a rotating platform (a) and constrained curved
motion v over a non-rotating platform (b).

In figure 17a (left) a body is moving freely over a rotating platform (e.g. a
carousel) and is affected by an outward centrifugal force of 22R = 2 m/s2 and a
Coriolis force 2Qv,= 2 m/s2. In figure 17b the platform is stationary but the body's
motion is constrained, like in equation (2) above, perhaps by some rail (e.g. a
children's toy train). The centrifugal force here is not due to any rotation, but is

due to the curved motion.

7.3 The metric terms in geophysics

The physical rational for discarding the metric terms is not because u,2/R «

2Q-ur but because the motions of the oceans currents and atmospheric winds are

5. Other metric terms might appear in a three dimensional spherical coordinate system where, with R in the
denominator, the numerator can take the form v?, uv, w?, uw and vw, where v=radial motion and w=vertical.
This is because each of the three equations, one for each dimension, expresses constrained motions along a
latitude, longitude or in the vertical. When the three dimensional derivation is made in vectorial form the metric
terms do not appear.
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not constrained. However, a TGV train between Rennes and Paris is constrained
to follow the rails and will experience a sideways acceleration both due the Coriolis

term and the metric term (figure 18).

Figure 18: A TGV train is running on a straight rail from Rennes to Paris at 47-48°
latitude. With a speed of ur = 90 m/s and at a distance from the Earth rotational axis of
4262 kilometers it is affected by two southward accelerations together 8.2 mm/s2. One
is due to the Coriolis effect (6.79 mm/s2) and the other to the curvature of the latitude
(1.43 mm/s2). The latter acceleration, always directed towards the equator6, would be
present also on a non-rotating Earth. If the train had run in the opposite direction, from
east to west, the Coriolis force 2Qsin(latitude)ur per mass unit would be directed in the
opposite direction, towards the north and the total acceleration, now northward, would

be 5.36 mm/s=2.

An ice hockey puck gliding frictionless over the ice doesn't seem to be on a
constrained motion, but it is, like most other bodies on our Earth, constrained by
gravity and the solid surface's reaction force to remain on the Earth's surface.
Moving with a speed V: it will everywhere on the Earth experience a vertical

upward acceleration

a =

j (6)

which added to the vertical Coriolis effect accounts for the so called "E6tvés
effect", which makes east-moving bodies lighter and west-moving bodies heavier’.
Geodists have to take this into account when they measure the Earth's gravity
from a moving platform. Now back to the "Coriolis force" and accelerations in an

absolute frame of reference.

6. The accelerations due to both the Coriolis term and the metric term are directed perpendicular to the Earth's
axis, and allowance has here been made for their local, horizontal component by a multiplication of the cosine
of latitude.
7. In contrast to the metric term, the vertical Coriolis effect 2Qurcos(latitude) is only dependent on the east-west
motion ur.
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7.4 Radial motion

A body is moving with the rotation Q from A to C, while simultaneously
moving radially inward to G with velocity v, covering the distance Ar = v-At. (figure
19a)

A

Ar=v-At

Figure 19a: A body moving from A is taking part in the rotation while at the same time
moving radially inward which leads to an arrival at G instead of C.

Without inward motion the body would cover an arc AC = r-Q-At = HC (figure
19b).

B _—
QB y
o — H
b L .
As, =\G
Ar-€2- At
Q- At
2|
o)

Figure 19b: The calculation of the deflected distance As:
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Q

Using infinitesimal calculus allows us to regard the arcs AC = HC and FG
EG. With a deflection As,; we have EG + As; = HC which yields As, =HC - EG
AC - FG = rrQ:At - (r - Arn):Q:-At = Ar-Q-At = a-At2/2, with a = 2Q-Ar/At = 2Q-v

as the left directed acceleration.

Q

8. KEPLER'S SECOND LAW AGAIN

Finally, let's go back to where we started, with Isaac Newton's geometrical
derivation in Principia of Kepler's Second Law, "loi des aires", or conservation of
angular momentum. Denoted L angular momentum is the product of the angular
velocity R x Q and the distance to the rotational centre R

L=R x (RxQ)

(per unit mass) where R is the distance to the centre of rotation Q. L and can
often be treated as a scalar (L) since the rotational axis and the arm or lever are
perpendicular to each other (as with spinning tops, ice skaters, ballet dancers and
carousels). Then

L = R2Q

Angular momentum is conserved if there is no torque, no force acting in the
direction of the rotation. In the case above there is indeed a force acting counter
to the rotation, the force that creates the Coriolis acceleration. Continuing to
approximate the arcs with straight lines, we can see that in figure 17a the area
EGO is smaller than the area HCO, meaning that the angular momentum has not

been conserved but has decreased (figure 20a).

B ——— ’\
= H
5 i

DL \&T

Coriolis acceleration
due to a real force

@
Figure 20a: The area covered by the inward motion (red triangle) is smaller than the
area covered by unaffected rotational movement (green area).
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However, with no torque the motion continues to D and the area covered by
the motion has expanded and we can, with the same argument as Newton, easily
prove that area EDO = area HCO and angular momentum is conserved (figure
20b).

No torque and angular
momentum 1s conserved Q- At

@)

Fig 20 b: The same as figure 17a but with no torque acting angular momentum is
conserved.

In the above example the angular velocity has increased. This agrees with
familiar observations of spinning ballet dancers or ice skaters contracting their
arms and spinning faster. The increase in kinetic energy derives from the work
the ballet dancer or ice skater does with their muscles against the centrifugal
force. So just because angular momentum is conserved, the rotational kinetic

energy is not®.

9. THE BEAUTY WITH MATHEMATICS

Newton's Principia and in particular his proof of Kepler's Second Law has

fascinated many physicists, among them Richard Feynman (1918-1988) who used

8. This by the way goes back to a mémoire by Coriolis (1831), « Mémoire sur le principe des forces vives dans
les mouvements relatifs des Machines », see BibNum.
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it in chapter 2 of his book The Character of Physical Law (Penguin, 1964), among
other examples, to clarify the relation of mathematics to physics:

Another thing, a very strange one, that is interesting in the relation of

mathematics to physics, is the fact that by mathematical arguments you

can show that it is possible to start from many apparently different starting

points, and yet come to the same thing. (p.50)

He then showed how the law of gravitation could be formulated in three
seemingly different ways: as Newton's Law, as the local field method and as a
variational "minimum principle".

They are equivalent scientifically... But psychologically they are very

different in two ways. First, philosophically you like them or do not like

them. Second, psychologically they are different because they are

completely inequivalent when you are trying to guess new laws. (p. 53)

The same is true for the mathematical derivations of the Coriolis effect: they
are different, but yield the same result. You are free to choose the one you like
and, at every instant, the one that helps you to draw new conclusions or even, as

Feynman puts it: "guess new laws".

(July 2017)
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