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In two 1844 entries to the Comptes rendus de l’Académie des Sciences, 

Joseph Liouville established the existence of transcendental numbers. What is a 

transcendental number? A number x is said to be algebraic if it is a solution of 

the following type of polynomial equation: 

n n-1f(x)=ax +bx +...+gx+h  

Where a, b,…., g, h are non zero integers. Thus, for example, the following 

numbers are algebraic: 

37-5, , 10, 5- 2, -1
3

 

If the polynomial cannot be divided into two polynomials, n is called the 

degree of the algebraic number. The numbers of algebraic degree 1 correspond 

exactly to the rational numbers. The other algebraic numbers are called 

irrational: in the list above the respective degrees are 1, 1, 2, 6, 2. 

 Before Liouville, we could have believed that all numbers were algebraic. 

After him, we knew that there existed others: a non-algebraic number is said to 

be transcendental. 

@@@@@@@  

Liouville presents two pieces of proof for the existence of such numbers; 

both rely on the theory of continuous fractions in order to establish the following 

fundamental: 

If X is a real algebraic number with a degree of n 2 (therefore not 

rational), then there exists a non-zero positive constant C such that for 

each rational number p/q, we have: 
n

p C
x - >

q q
 

In other words, even if the set of rational numbers is dense, a non-rational 

algebraic number cannot be sufficiently approximated with a rational.  

Liouville’s inequality can establish itself as the elementary means without 

the need for the continuous fractions that Liouville uses: this is why we will 

diverge from this part of his text, nonetheless ending up with the same result. 
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Here is one simple proof of this inequality. The definition of a derivative via 

difference quotient theory – well known to all first year university mathematics 

students – affirms that for every continuous and derivable real function f, there 

exists of a number t understood to be between x and p/q such that: 

p p
f(x)- f = x - f'(t)

q q

   
   
   

 

If x is therefore algebraically real, there exists a polynomial with non-zero 

coefficients so that f(x)=0, the preceding inequality implying: 

p p

q q

n

n

f q  f
p

x - = =
q f '(t) q  f '(t)

   
   
   

. 

We will look now to lower bound this quantity by one of the type A/qn  

(Liouville’s inequality). 

 

Demonstration of Liouville’s inequality

 

 

We will look firstly to lower bound the numerator qn f(p/q). As Liouville 

had noted, this quantity, which he called f(p,q), is equal to apn + bpn-1 

+…. + hqn : it is a whole number.  Liouville had taken the precaution to 

indicate that the polynomial f had been “cleared of any commensurable 

factor”, that is to say, reduced to a form where it will allow only 

irrational solutions. Considering this precaution, the numerator can 

never be 0; acting as a whole number (positive or negative), its 

absolute value is always under bound by 1.  

We will look now to over bound the quantity |f’(t)|, representing the 

denominator, by recalling that t is understood to be between p/q and x. 

We choose p/q so that – 1 < x – p/q < 1. So, with f being a polynomial 

function limited on the interval [x – 1, x + 1], it takes at this section 

finite values which we can over bound by an invariable quantity of 1 : 

|f’(t)| < A. 

In documenting the above, after having under bound the denominator 

(with C = 1/A), we obtain Liouville’s inequality: 

p p

q q

n

n n

f q  f
p C

x - = =
q f '(t) q  f '(t) q

   
   
   


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@@@@@@@ 

Once this inequality has been established, Liouville quickly mentions (in a 

sentence) the means with which he constructs a non-algebraic number (“We 

quote in particular the series…”). Let us now detail the second part of his 

‘discovery’. He observes that the number 

k!
k=1

1
y=

10



   

(We take a = 10 in the example that he gives at the end of the article) 

is “too badly approximated” by the partial sum, 
N

N N
k! N!

Nk=1

p p1
= =

q10 10
 , from which 

he concludes that it is a transcendental number. We will now detail the sum. 

Liouville’s series is a transcendental number 

 

Let us address the quantity 
N

k! k!
k=1 N+1

1 1
y-

10 10



  = 

0,0000…….01……..:  

The first 1 appears in the position (N+1)! after the comma, and the 

other 1s appear more and more spaced apart. We can therefore 

overbound this quantity. For illustration we will do so with the 

number where 2 appears in the position (N+1)! after the comma 

following the 0:   

k! (N+1)! N! (N+1) N+1
N+1 N

1 2 2 2
< = =

10 10 (q )10



  

For every non-zero positive quantity of C, this last quantity will be 

overbound by 
n

C

N(q )
 when N is large enough that (N+1- n)

N >
2

q
C

 (a 

reminder that qN = 10N!). Therefore, for any given n and for any 

non-zero positive quantity of c we will be able to find an infinity of 

p/q (in the knowledge that pN/qN  are sufficiently large enough for n) 

so that 
n

p C
y- <

q q
. 

This contradicts Liouville’s inequality and allows for the conclusion 

that it is transcendental. We will observe in the passage that an 

irrational algebraic number cannot be closely approximated 

(Liouville’s inequality), yet on the other hand certain transcendental 

numbers can be. 
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@@@@@@@ 

Several years later, George Cantor demonstrated that “almost all” 

numbers are transcendental, which is quite surprising since by this point we are 

so much better familiarized with the zeros of polynomial equations! In 1873, 

Charles Hermite established the transcendence of e, then, continuing with similar 

ideas, Ferdinand Lindemann demonstrated in 1882 that  is transcendental. This 

last result solves once and for all the old problem of the squaring of a circle! We 

are convinced in effect that from the length of the unit, that all construction with 

the rule and compass can give only algebraic numbers (moreover, of the degree 

1,2,4,8,16 etc. – Wantzel’s theorem). If squaring the circle is possible,  would 

be algebraic, which is absurd. 

Since, many families of transcendental numbers have been updated. If a  0 

or 1, and if b is irrational, both algebraic, so ab  is transcendental (A.O. Gelfond 

and Th. Schneider, 1934). In particular, since e = (-1)(-i), one sees that e is 

transcendental. In 1955, K.F.Roth improved the Liouville’s inequality and showed 

that for every algebraically transcendental x and for every ε there exists an 

infinite number of irreducible p/q such that |x- p/q| > 1/q2+ε. For this he was 

awarded the prestigious Fields medal in 1958. 

This theory of transcendental numbers flourishes still today, without a doubt 

thanks to the fantastic work of mathematician Alan Baker during the 60s and 

70s, for which he too was awarded the Fields medal in 1970. 

The moral of this story is, it would seem to me, that Liouville’s two 

memoranda, however perfectly elementary, are greatly profound. Only a great 

mathematician could discover ideas of such simplicity yet so greatly rich. 

 

 

(September 2008) 

(translated in English by Luke Mackle, published September 2013) 

 


