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Figure   1  : A Norwegian bank note (1978) bearing the effigy of Niels Henryk Abel
(1802-1829)

The  name Niels  Henrik  Abel  may not  allude  to  much,  or  else  only  to  the

eponymous prize created in 2001 by the Norwegian Academy of Science and Letters

to make up for the absence of the Mathematics Nobel Prize. And yet, in popular

imagination,  Abel’s  romantic  fate  made it  possible  for  him to  compete  with  his

famous  contemporary  Évariste  Galois  (1811-1832).  Born  in  1802,  in  a  Norway

stifled by the Napoleonic blockade, he proved to be a very studious pupil from a

modest family.  The return of  a strict  teacher (whose aggressive teaching would

even go on to kill a pupil) and the arrival of a new and more open teacher helped

the young Niels to thrive and become familiar with early mathematical success. The

latter teacher, Bernt Holmböe, very quickly understood the ability of his pupil, as

seen  with  the  following  assessment  (which  served  as  a  recommendation)  from

which, as some people are to believe, we get a premonition of his tragic fate:
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To  the  excellence  of  his  intelligence  unites  a  passion  and  an  insatiable
interest for mathematics, so much so that, without a doubt, if ever given the
chance, he will like become a great mathematician.

After some early articles1 in the journal Magazin for Naturvidenskaberne2, Abel

wrote,  in  1824,  a  small  mathematical  wonder  titled  Mémoire  sur  les  équations

algébriques oú l'on démontre l'impossibilité de la résolution de l'équation générale

du cinquième degré [Thesis on Algebraic Equations in which the Impossibility of

Resolving General Fifth-Degree Equations is Demonstrated]. Thanks to this critical

success,  he won a scholarship from the Norwegian government for a study trip

abroad  (first  of  all  in  Germany  and  secondly  in  France)  to  meet  renowned

specialists, bask in their knowledge and also gain recognition for his own works.

The  first  few  stops  in  Germany  (Hamburg,  Berlin,  Freiburg)  were  quite

promising, especially with meeting August Leopold Crelle who soon became a friend

and an unconditional  support for  the young Norwegian. Unfortunately,  due to a

misunderstanding, Abel did not make a detour to Göttingen to meet with Gauss

(who, in any case, no longer seemed interested in works on algebraic equations).

Figure 2: August Leopold Crelle (1780-1855), founder of Journal für die reine und
angewandte Mathematik (also widely known under the name of Crelle’s Journal)

He therefore hit the road to Paris since that is where, among others, the great

Augustin  Louis  Cauchy  (1789-1857)  worked,  the  only  one  who  understood  and

1
1. His first article is titled  Méthode générale pour trouver des fonctions d'une seule quantité variable  [General

Method for Finding Functions of One Variable Quantity], where a property of these functions is expressed by an
equation between two variables and appeared in the first issue of the first volume in 1823.
2
.  The journal  was cofounded by physicist  Christopher Hansteen,  professor of  astronomy at  the  University  of

Christiana, who supported the young Niels Abel.
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recognised the genius of the Norwegian. So full of hope was the young Abel (then

only  23  years  old)  when  he  arrived  in  Paris  and  settled  modestly  in  the  Latin

Quarter. It was not easy for the student to get in touch with the great scientists;

with the Scandinavian’s own shyness and the remoteness of luminaries, really more

than anything this  is  about a missed rendezvous.  Abel  still  tried to  get himself

known  but  ultimately  had  to  admit  his  disillusionment.  Yet,  he  was  not

mathematically discouraged, writing, in 1826, a long text titled  Mémoire sur une

propriété générale d'une classe très étendue de fonctions transcendantes [Thesis on

a General Property of a Very Extensive Class of Transcendental Functions] for which

he immediately filed a patent to the Académie des sciences. The rapporteurs were

Adrien-Marie Legendre (1752-1833) and, rightly so, Cauchy. However, little news

came  back  to  him  about  this  text  and  he  recorded  his  despair  in  his

correspondences, for example, in the letter to Holmboe3, his former teacher:

Legendre is an extremely complacent man, but, unfortunately, also very old.
Cauchy is mad, and with him there really is no way of getting along, although
for now it is he who knows how mathematics should be treated. What he
does is excellent, but very confusing.

@@@@@@@

Here is the tragic part of the story: Cauchy forgot or lost the manuscript4 and

as a result, Abel did not get the recognition he came to find. He still persisted for

some time but then left to his native country (with a new stop in Berlin), and with

two concerns: what happened to his precious Paris manuscript? And, how could he

ensure minimum material comfort for himself and his fiancée? Times were really

tough. (“My trip to Paris was terribly pointless", he confides in a letter to Boeck) and

the  situation  alarming  as  he  discovered  the  lack  employment  on  returning  to

Norway. Getting a stable job was then much more complicated than it is nowadays

and Abel and his friends really struggled. The former wrote more outstanding works,

while the latter rushed to academic authorities in different countries. In Norway he

3. Letter from 24th October 1826, page 45 from the correspondence section of the Paper, published on the occasion
of the centenary of his birth, online here (see figure 3).
4
. In fact, he would find it in June 1829 after Niels Abel’s death but then the manuscript would be lost again another

two times before an unexpected rediscovery in Florence (the missing last pages were found in 2002), where it
remains today. For full details of such "negligent" management by the Académie des Sciences, you can read "Abel
et l'Académie des Sciences" by René Taton, in Revue d'histoire des sciences et de leurs applications, 1948, volume
1, no. 1-4, pp. 356-358 (online in Persée).
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was offered Abel a job to replace Professor Hansteen who was then travelling in

Siberia. Crelle was thrilled to finally announce in a letter from 8th April 1829:

My dear, dear friend, I am now able to bring you some good news. The
Ministry of Education has decided to summon you to Berlin, and offer you a
job. (...) You can now contemplate the future without worries. (...) You will
come to a truly good country, with a better climate, and you will be even
closer to science and genuine friends by whom you are valued and loved.

Unfortunately, Niels would never get to read this letter because he died two

days  earlier  (then  aged  27  years  old)  of  tuberculosis  (which  was  presumably

contracted during his terrible stay in Paris) during a trip with his fiancée to Froland.

As indicated by Holmoe in the preface to the edition of works of Abel from 1838:

Tirelessly  he  continued  his  scientific  research,  and  it  is  possible  that,
especially in the last year of his life, he put in too much activity and effort,
since he was a naturally unwell person with a weak and sensitive makeup.  

Figure 3: The memorial published to mark the centenary of Abel’s birth (editions in
Kristiania, Paris, London & Leipzig); such works were published in French at the time

(1902).

WORKS

If Niels Abel’s works were slow in becoming fully recognised in France, they

were  nonetheless  partially  published  during  his  lifetime,  mainly  in  the  famous

Crelle's Journal (a much more practical title than the official German title Journal für
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die reine und angewandte Mathematik, herausgegeben von Crelle), at that time the

collection  of  several  (apparently)  complete  publications  of  works.  As  Christian

Houzel5 suggests, Abel’s works can be classified into the following five categories: 

1.  Resolution (either possible or not) of algebraic equations by radicals: this is the

subject of his first major piece of work with the impossibility for an equation of

degree 5 (the theorem from now on known as the Abel-Ruffini theorem). His efforts

would be completed by one of Galois’s more general theories a few years later.

2.  Study of transcendental functions: we know the number of functions defined as

primitive  from the functions  with radicals  (elliptic  integrals)  or  reciprocal  of  the

latter (elliptic functions). Abel studied them rigorously and in great detail and then

classified them according to their properties. This was the main objective of the lost

thesis of the Académie des Sciences in Paris but also the basis of a healthy rivalry

with another promising mathematician, Jacobi (1804-1851).

3.  Resolution of functional equations; in his works on transcendental functions,

Abel encountered a problem regarding functional equations which he already knew

from his mathematical youth. He provided some advances (though often unknown).

4.  Integral transformations: these also emerged at some point as a tool in other

studies but led to some specific publications. 

5.  Series  (finite  or  infinite):  just  like  Cauchy  in  his  course  at  the  École

polytechnique, Abel incorporated the bases of this theory when he discovered the

predominant lack of strictness. Here are his comments in a letter to Holmboe:

Even if we consider the simplest case, there is not in all mathematics a single
infinite series whose sum has been rigorously determined. In other words,
the most important areas of mathematics prove to be without a foundation.

Consequently, he would go on to bring order and discipline to the methods

employed: thus born were Abel's lemma, the Abel theorem, the Abel transform... 

GENERAL DESCRIPTION OF THE TEXT

The text of this discussion, titled Recherches sur la série binomiale [Research

5. The legacy of Niels Henrik Abel: the Abel bicentennial, Oslo, Springer 2002.
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on the Binomial Series], is the main part of Abel’s work on the fifth category above;

the original text was published in  Journal de Crelle in 1826 (after a shorter text

dealing with the same series), but its republication in France will be used as part of

the complete works which were published in 1881 by the Norwegian State under the

direction of the two prestigious mathematicians, Ludvig Sylow and Sophus Lie.

This  article  is  divided into different parts  that do not all  present the same

interest for us. The first is a short introduction to the entire article recalling some

problems  of  the  theory  of  numerical  series.  The  second  draws  up  a  list  of

convergence theorems and their demonstrations. The third and fourth parts are a

virtuoso work in the particular case of binomial series. Such deployed techniques

then appear customary for the study of entire series; yet, at the time they impose

on  Abel  the  introduction  of  radius  of  convergence  and  the  distinction  between

studies on open disc convergence and the edge of this disc. The fifth part exploits

the results for binomial series in order to calculate the ensuing sum of other series.

SECTION I

In  order  to  explain  his  approach,  Abel  provides  a  brief  overview  of  the

problems of series convergence, as identified in mathematical literature of the time;

he was outraged of the little consideration given to such appropriate justifications -

as  if  the  manipulation  of  sums  of  an  infinite  number  of  terms was  completely

identical to that (which is more common) of the sums of a finite number of terms:

Usually the operations of the analysis  are applied to infinite  series in the
same manner as if the series were complete, which does not seem to be
without particular demonstration.

Indeed,  in  order  to  be able  to manipulate infinite  sums (like the proposed

examples of the product of two of these sums, of the composition of an infinite sum

with a common function or the manipulation of divergent series), what must be

proved first of all is the existence of such sums, that is to say, the convergence of

the sequence of partial sums when the number of terms approaches infinity. This

rigorous  approach  (mainly  due  to  Cauchy)  responds  in  fact  to  a  century  of

hazardous manipulations of divergent series and to the controversies produced. 

Then, Abel introduced the binomial series whose general term (indicated by n)
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is nm×(m-1)×...×(m-n+1)×x / n! . He recalls that there is only a finite number of

nonzero  terms  if  m is  a  natural  integer  and  that  the  sum is  therefore  (1+x)m

according to the binomial theorem of Newton. Ultimately, he intended to 

  Find the sum of the series

2 3m m(m-1) m(m-1)(m-2)
1+ .x+ .x + .x +etc.

1 1.2 1.2.3

for  all  real  or  imaginary  values  of  x  and  m  for  which  the  series  is
convergent.

This series had already been studied by Newton, Euler, Bolzano (whose paper

is not even cited by Abel) and Cauchy (as well as the study of convergence and

determination of the sum for a real argument). To be able to study this series, Abel

had to create some reminders (from "the excellent work of M. Cauchy") and state

some results  (theorems I  to  VI)  which form the pattern of  this  article’s  second

section. Now to explain in detail  such statements and their  evidence with more

contemporary notations: indeed, Abel used numerical series and then described the

different behaviour of such series when a parameter was modified; nowadays it is

simpler to speak directly of series of functions and to study the convergence and the

properties of the sum as a function. Thus, we translate Abel's statements in terms

of whole series even if this word is anachronistic compared to the text studied here.

Figure 4: Augustin Cauchy (1789-1857) and his famous Cours d’analyse à l’École
royale polytechnique (1821).

@@@@@@@
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Abel begins by explaining the convergence of a numerical series: being given a

real or complex sequence (n), the series is considered with general term n. Such a

series is convergent if the sequence of partial sums (understand the sum of terms k

for k being from 0 to n) come together when n approaches infinity. It is otherwise

considered  divergent.  Abel  then  recalls  a  necessary  and  sufficient  condition  of

convergence for a series6 (which from now on will be called the Cauchy criterion):

For a series to be convergent,  it  is necessary and sufficient that for ever
increasing  values  of  m,  the  sum  m+  m+1+…+  m+n approaches  zero
indefinitely, regardless of the value of n.  

Then, as a final reminder, he explains in a sentence a necessary condition (but

not  sufficient)  of  convergence:  if  the  series  converges,  then  the  general  term

approaches zero. Incidentally, he clarifies a somewhat original notation for readers

of the twenty-first century:

represented in this paper by ω will be an amount which can be smaller than
any given quantity  

In more conventional terms, a sequence will be smaller than ω if for every ε >

0, there is a value from which all terms of the sequence are bounded by ε. What

Abel  wrote,  nonetheless,  has  not  really  been  preserve  beyond  the  nineteenth

century; but it has the advantage of making it possible for him to translate the fact

that  a  sequence  approaches  zero  (and,  in  more  general  terms,  to  write  the

convergence of a sequence) in terms of inequalities which are easy to manipulate.

SECTION II

The first two theorems (numbered I and II) strictly state a result known today

as Alembert's  ratio  test  (providing,  among other  things,  a  way to calculate  the

radius of convergence of an infinite series). This result was already known before

the work of Abel but was often used inappropriately, such as in the work of Bolzano

on binomial series (Binomischer Lehrsatz and Rein Analytischer Beweis, 1817).

Let's consider a sequence (ρm) with positive terms so that the quotient ρm+1/ρm

permits the finite limit .

6
. The series here implicitly is of real or complex values: the argument to ensure that the Cauchy criterion is 

sufficient to the convergence is the completeness of the underlying space.
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Theorem I. If the limit  is strictly greater than 1, then the series with general 

term ρm is divergent and, more generally, any series with general term εmρm, where 

εm does not approach 0, is divergent. 

 

Theorem II. If the limit  is strictly less than 1, then the series with general term

ρm is convergent and, more generally, any series with general term εmρm, where εm

is limited,7 is convergent.

The proof of these theorems is based on the comparison of the series with

general term ρm with the geometric series with the value  ', with  ’ being strictly

between  and 1, that is to say, the comparison with the series with general term

(’)m. As we know explicitly the expression of partial sums of the geometric series

(and more particularly its Cauchy slices (that is to say, the sums of the terms of the

series  for  the  evidence  included  between  fixed  values),  we  know that  this  one

converges if (and only if) its value is of a modulus which is strictly less than 1.

In his evidence, Abel is a little less precise: he seems to assume that from a

certain value, ρm+1 <  ρm, that is to say, that after the sequence ρm+1/ρm approaches

 by lower and distinct values of   (the terms of the sequence approach   while

remaining  strictly  less  than  ); furthermore,  the  statement  implies  that   ≠ 1.

Nevertheless, it is extremely important to acknowledge that these points are only

details that do not actually fundamentally change the nature of the result and that

repeating such results would serve to polish these details which are written down.

@@@@@@@

Abel then continues with a more technical theorem:

Theorem III. In which (tm) is a real sequence, (pm) is the sequence of partial sums

of the series with general term tm and (εm) is a positive decreasing sequence. If the

sequence (pm) is raised by , then the partial sums of the series with general term

εmtm is raised by ε0. 

This result is extremely importance in all the evidence that follows: for it shows

how a series can be controlled by decomposing its general term as the product of a

7
. Abel adds by 1, but it is clear that this choice of constant does not occur in his evidence of this theorem.
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positive  decreasing  term  and  of  a  term  whose  sums  are  monitored.  The

demonstration is based on the technical trick which entails matching  tm with the

difference pm - pm-1  in order to get a sum that involves firstly pm and secondly (εm -

εm-1): this great idea makes it possible to shift the difficulties to be reduced to terms

upon which are the hypotheses of  the theorem. The manipulation implemented,

which imitates the integration by parts by replacing the functions for sequences and

the integrals for sums, will now called the Abel transform (or summation in parts).

Example of the Application of the Abel Theorem 

The Abel theorem can be applied to many studies  of convergence. A
primary example relates to the elementary case of "alternating" series,
that is to say, of its coefficients (-1)nεn

 with (εn ) decreasing towards 0:

then tn= (-1)n is taken and it is verified that the partial sums of this
series  are  bounded  by  1.  Consequently,  the  alternating  series  is
convergent. This result, which was already known as Leibniz's, was
referred  to  as  the  special  criteria  of  alternating  series.  Thus  the
preceding example can be generalised with tn= einθ for θ, which is not
a whole multiple of 2π. The character which is bounded by the partial
sums then comes from the explicit calculation of the geometric sums.

@@@@@@@

The following two theorems relate to the continuity8 of a sum of a functional series,

firstly in the case of infinite series and then in the case of infinite series that depend

on a parameter. 

Theorem IV. In which f  is the sum of the infinite series of coefficients (m). Let’s 

suppose that this infinite series is convergent for the argument  > 0 (that is to say,

that its radius of convergence is greater or is equal to ). Then:  

 the infinite series converges for any argument with absolute value less than ;

 the function f  is continuous to the left on [0, ].

 

In the essay proposed here on theorem IV, the two different points of Abel’s

statement have been highlighted. The first corresponds to a definition of what the

8
. The definition of continuity which Abel recalls is really more about the continuity on the left.
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radius of convergence is called today as the upper limit of the total reals for which

the infinite series converges; indeed, the first point indicates that for any argument

which is strictly less (in absolute value) than the radius, the series is convergent.

The second point is to do with an even finer result and indicates the property of

continuity of the sum of the infinite series on the area of convergence, including the

edge of  the  circle  if  the  series  converges there.  The proof  involves  cutting  the

defining  series  so  as  to  exploit  the  hypotheses  of  convergence  (via  the  Abel

transform, theorem III) and the continuity of partial sums (which are polynomials).

@@@@@@@

The  following  theorem  is  designed  to  study  the  continuity  related  to  a

parameter in the coefficients of the infinite series.
 

Theorem V. In which (n) is a result of continuous functions on [a,b]. Let's suppose

that the infinite series in which the coefficients of coefficients (n) are, for any x 

[a,b], convergent for the argument  > 0. Then, for any   [0, ], the function 

: ( )aå n
n

n

f x v xa

is continuous on [a,b].

This result, which is a bit more technical because of the two variables (those of

the  functions  n,  denoted by  x and that  of  the  infinite  series,  denoted by  ),

explores in fact the notion of uniform convergence even if this is not stated so. Abel,

indeed, realised that the convergence of the series at one point is not enough to

convey the property of continuity on a vicinity of this point. It is much easier to say

that Abel resumed Cauchy and his course in 1821 as a footnote, in which he shows

a  counterexample  with  the  trigonometric  series  which  has  the  general  term

1
x sin(kx)

k
a  (which is not continuous to the multiple blundering arguments of π).

The Notion of Uniform Convergence

Uniform  convergence  is  a  much  stronger  condition  than  simple
convergence. 
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 In the case of simple convergence, for any threshold ε > 0 and any
element  x of the considered domain, a value can be found from which
the  distance |fn(x)-f(x)| becomes less than ε. A priori, if y ≠ x is chosen,
then  the  value  N whose  distance  |fn(x)-f(x)|  is  less  than  ε,  will  be
different and there will not necessary be a value which could be suitable
for all the arguments x.
 In the case of uniform convergence, a value can be found from which
the distance |fn(x)-f(x)| becomes less than ε for any x. This condition is
therefore  much  stronger:  a  sequence  of  functions  which  converges
uniformly altogether, converges simply on this one (and for each x it is
enough to consider the value which is common to all the arguments).

Figure 5: Non-uniform convergence. The functions fn(x)= xn (whose
curves are represented by the dotted lines) converge on the segment [0,1]

around the discontinuous function (of value 0 everywhere except on 1 where
it is worth 1) which is represented by the violet curve. This convergence is
not uniform on the segment [0,1] but it is on any segment of [0,a] where a

< 1.

In this diagram, the evidence resembles that of the theorem IV with a cutting

via isolating a polynomial function and via the increasing of the rest by a geometric

sequence whose value is strictly less than 1, multiplied by a function θ. This makes

it possible to obtain easily an increase in the remainder for a fixed x; unfortunately,

such an increase depends on  x and the sequence of Abel’s argument is actually
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wrong (just like the case with Cauchy but this time the affirmation demonstrated is

correct) because he used the same increase on an interval between (x – β) and x.

@@@@@@@

The last theorem of this section no longer concerns the regularity of functions

but a role of manipulation for the product of series (now called the Cauchy product).

Theorem VI. In which two convergent numerical series with general term (n) and

(’n), so that the numerical series with general term ρn = |n| and  ρ’n = |’n|  is also

convergent. The series with general term  '
n

n k n-k
k=0

r =åv v  is thus convergent whose

sum verifies 

= .n
n

r
æ öæ ö¢ç ÷ç ÷
è øè ø

å å ån n
n n

v v

Or,  in  somewhat  more  contemporary  terms,  the  Cauchy  product  of  two

absolutely convergent series still defines a convergent series. The evidence consists

of recognising in the partial sum of rn the product of partial sums n and ’n, and in

addition increasing the remaining terms through the use of absolute convergence.

No sooner had he made this demonstration, had Abel engaged with a result in

which the statement is not stated as a theorem as such.

In which two numerical convergent series with general term tn and t’n, so that

the series with general term 
n

k n-k
k=0

t t¢å  is convergent.

Thus 

n

k n-k n n
n k=0 n n

 t t =  t  t .
æ ö æ öæ ö¢ ¢ç ÷ ç ÷ç ÷

è øè øè ø
å å å å

The evidence of this result combines the different theorems of this section:

- Introducing the infinite series (whose coefficients are the tn and tn' respectively)

taken into   [0,1[, which are absolutely convergent according to theorem II

- Calculating the product of these series with theorem VI. 

- Finally, making the transition to the limit   1 thanks to the continuity obtained
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through theorem IV. 

SECTION III

The objective of this fairly extensive section is to study the convergence of the

binomial  series in the case of  an argument  x  of different modulus of  1, and to

calculate when the sum of the series exists. Abel thus proceeded in several steps.

He rewrote all the quantities according to real variables. Here is a brief summary of

the notations for the reader who wishes to follow the calculations in their entirety:

( , )

=0

1

( 1) ( 1)

( 1) 1

( 1) ( 1)
( ) = ( , )

( 1) 1

écriture cartésienne écriture géométrique

f

gm
m

qm m m
m

m y

m

a
m d
m

m l a
m m

mj
m m

¥
¢

¢+
+

- +

- - +
-

- - + ¢+
-å

i

i

i

i k k

m k ik

x a ib e

m
e

m m m
x e

m m m
m x p iq f k k e









 The first step consists of identifying the real and imaginary parts (p and q) of the

desired  sum  φ(m) in  accordance  with  these  different  parameters:  the  formula

numbered 2 in Abel's text  (on page 74) is  obtained. In order to determine the

convergence  or  divergence  in  the  case 2 2 = 1 a b ,  it  is  therefore  enough  to

apply the D'Alembert's principle (theorems I and II of section 2).

 Once the convergence was established for  < 1, Abel used theorem VI on the

series  products  in  order  to  show that  the  sum verifies  the  functional  equation

φ(m+n) = φ(m) φ(n) (formula 3).

 The following step consists of solving this equation in stages:  

- A primary change of an unknown function (an auxiliary function is solved with θ) 

- A recurrence in order to obtain integer values (formula 8) 

- The transition to rational values (formula 9) 

- Then, with a continuity argument from theorem B, the transition to real values.
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  Formulas 11 to 16 describe the steps for  returning from this  result  on the

auxiliary function θ to the desired sum φ through the modulus of this last function. 

SECTION IV

This section aims to clarify the borderline case of the arguments x of modulus

1. Accordingly, the discussion will focus on the real part of the exponent m.  

 First case: If the real part k of m is less than or equal to –1, the series general

term does not approach 0 because its module  λμ does not approach 0: there is

trivial divergence. 

 Second case: If the real part  k of  m  is positive, then the series with general

termλμ is convergent according to the Cauchy criterion9. Subsequently, the use of

the Abel transform (theorem II) demonstrates that the binomial series converges. 

 Third case: If the real part k of m belongs to ] –1,0[,then it is multiplied by x+1 

and we are thus reduced to the preceding case which establishes the convergence. 

The  section  is  finally  devoted  (on  the  one  hand)  to  a  reminder  of  the

established results, of convergence and the value of the sum, and (on the other

hand)  to  some particular  cases:  or,  more precisely,  A:  case  where  m  is  a  real

number; B: case where x is a real number; C: case where m and x are all real; D:

case  |x|= 1 ; E: case  m  real and  |x|= 1 , F: case where  x  is purely imaginary)

where the formula of the sum is simplified in order to find previously known results.

SECTION VS

This last part makes it possible 

through appropriate transformations of the previous expressions [to] still
deduce several others, among which are some very remarkable ones .

What is noticed (among other things) is the development in infinite series of

99. Recall the Cauchy criterion for a series: for any threshold ε > 0, exists a value from which all sums of a finite
number of terms of consecutive indices are increased (in modulus) by ε. The completeness of the body of real or
complex ones ensures a series which verifies this property will converge (property of completeness of such bodies).
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the functions  ln and  arctan  (arctan  α =  α –  1/3  α3+ 1/5α5 +…)  as well  as other

admirable identities among trigonometric functions. 

CONCLUSION

This article  written by Abel is officially  a virtuoso work for studying a very

particular series but one in which there is, in addition to the rare rigor of that time

(not including the error in the evidence of theorem V), some general tools for the

study  of  numerical  series.  Taking  on  the  ideas  and  work  of  Cauchy  regarding

convergence (particularly, the study of convergence via the Cauchy criterion), Abel

introduces calculation methods which adapt for numerous semi-convergent series

and  which  prefigures  (among  other  things)  the  uniform  convergence  of  Karl

Weierstrass (“Sur la théorie des séries entières” ['On the Theory of Infinite Series],

written in 1841 but published only in 1894) and Louis-Augustin Cauchy (“Notes sur

les séries dont les divers termes sont des fonctions continues d'une variable réelle

ou imaginaire, entre des limites données” [Notes on Series whose Various Terms

are  Continuous  Functions  of  a  Real  or  Imagined  Variable  among  Given  Limits]

published in Comptes Rendus de l'académie des sciences (Paris, 1853), the text in

which  he acknowledges his  mistake  from 1821, which was highlighted  by Abel,

before introducing the Uniformly Cauchy Sequence for the series of functions).

(July 2011)

(Translated by John Moran, published December 2014)

16


