En deux articles de 1831 et 1835, Coriolis met en évidence la notion de « force d’entraînement » et de « forces centrifuges composées » ; ces dernières prendront le nom de force de Coriolis, permettant d’expliquer les phénomènes les plus divers de rotation d’un repère par rapport à un autre (...
Reconstitution possible d’une dérivation des (futures) « forces de Coriolis » dans les Principia de Newton, à partir de l’approche totalement géométrique de celui-ci, via notamment la loi des aires.