Dans ce texte de trois pages, Stainville donne une démonstration du caractère irrationnel de la base des logarithmes e ; il dit tenir cette démonstration de Joseph Fourier via Poinsot.
L’article démontre la dénombrabilité des nombres algébriques et la non-dénombrabilité des nombres réels. Il ouvre l’étude de l’infini du point de vue mathématique, marque la naissance de la théorie des ensembles – en fait une théorie de l’infini –, et porte en germe l’hypothèse du continu,...
Ce texte d’une grande diversité est la preuve de l’irrationalité de π et l’acte de naissance des fonctions hyperboliques (sinus et cosinus hyperboliques).
Les textes de Hermite (1873) rassemblés ici démontrent la transcendance de e et introduisent des méthodes nouvelles par rapport à Lambert (1761) et...
Cantor expose les résultats qu’il a obtenus sur les nombres transfinis, c’est-à-dire les nombres (cardinaux et ordinaux) que sa théorie permet d’attribuer aux ensembles infinis. Il établit une relation d’ordre entre les cardinaux et procède aux différentes opérations avec ces cardinaux :...
Dans ce texte, Liouville est le premier à mettre en évidence un nombre transcendant (c’est à dire non algébrique) ; il résume cela comme « des classes très étendues de quantités dont la valeur n’est ni rationnelle ni même réductible à des irrationnelles algébriques », c’est à dire « une grande...